7 research outputs found

    Feasibility of ultra-rapid exome sequencing in critically ill infants and children with suspected monogenic conditions in the Australian public health care system

    No full text
    Importance: Widespread adoption of rapid genomic testing in pediatric critical care requires robust clinical and laboratory pathways that provide equitable and consistent service across health care systems. Objective: To prospectively evaluate the performance of a multicenter network for ultra-rapid genomic diagnosis in a public health care system. Design, Setting, and Participants: Descriptive feasibility study of critically ill pediatric patients with suspected monogenic conditions treated at 12 Australian hospitals between March 2018 and February 2019, with data collected to May 2019. A formal implementation strategy emphasizing communication and feedback, standardized processes, coordination, distributed leadership, and collective learning was used to facilitate adoption. Exposures: Ultra-rapid exome sequencing. Main Outcomes and Measures: The primary outcome was time from sample receipt to ultra-rapid exome sequencing report. The secondary outcomes were the molecular diagnostic yield, the change in clinical management after the ultra-rapid exome sequencing report, the time from hospital admission to the laboratory report, and the proportion of laboratory reports returned prior to death or hospital discharge. Results: The study population included 108 patients with a median age of 28 days (range, 0 days to 17 years); 34% were female; and 57% were from neonatal intensive care units, 33% were from pediatric intensive care units, and 9% were from other hospital wards. The mean time from sample receipt to ultra-rapid exome sequencing report was 3.3 days (95% CI, 3.2-3.5 days) and the median time was 3 days (range, 2-7 days). The mean time from hospital admission to ultra-rapid exome sequencing report was 17.5 days (95% CI, 14.6-21.1 days) and 93 reports (86%) were issued prior to death or hospital discharge. A molecular diagnosis was established in 55 patients (51%). Eleven diagnoses (20%) resulted from using the following approaches to augment standard exome sequencing analysis: mitochondrial genome sequencing analysis, exome sequencing-based copy number analysis, use of international databases to identify novel gene-disease associations, and additional phenotyping and RNA analysis. In 42 of 55 patients (76%) with a molecular diagnosis and 6 of 53 patients (11%) without a molecular diagnosis, the ultra-rapid exome sequencing result was considered as having influenced clinical management. Targeted treatments were initiated in 12 patients (11%), treatment was redirected toward palliative care in 14 patients (13%), and surveillance for specific complications was initiated in 19 patients (18%). Conclusions and Relevance: This study suggests feasibility of ultra-rapid genomic testing in critically ill pediatric patients with suspected monogenic conditions in the Australian public health care system. However, further research is needed to understand the clinical value of such testing, and the generalizability of the findings to other health care settings.

    Risk of COVID-19 after natural infection or vaccinationResearch in context

    No full text
    Summary: Background: While vaccines have established utility against COVID-19, phase 3 efficacy studies have generally not comprehensively evaluated protection provided by previous infection or hybrid immunity (previous infection plus vaccination). Individual patient data from US government-supported harmonized vaccine trials provide an unprecedented sample population to address this issue. We characterized the protective efficacy of previous SARS-CoV-2 infection and hybrid immunity against COVID-19 early in the pandemic over three-to six-month follow-up and compared with vaccine-associated protection. Methods: In this post-hoc cross-protocol analysis of the Moderna, AstraZeneca, Janssen, and Novavax COVID-19 vaccine clinical trials, we allocated participants into four groups based on previous-infection status at enrolment and treatment: no previous infection/placebo; previous infection/placebo; no previous infection/vaccine; and previous infection/vaccine. The main outcome was RT-PCR-confirmed COVID-19 >7–15 days (per original protocols) after final study injection. We calculated crude and adjusted efficacy measures. Findings: Previous infection/placebo participants had a 92% decreased risk of future COVID-19 compared to no previous infection/placebo participants (overall hazard ratio [HR] ratio: 0.08; 95% CI: 0.05–0.13). Among single-dose Janssen participants, hybrid immunity conferred greater protection than vaccine alone (HR: 0.03; 95% CI: 0.01–0.10). Too few infections were observed to draw statistical inferences comparing hybrid immunity to vaccine alone for other trials. Vaccination, previous infection, and hybrid immunity all provided near-complete protection against severe disease. Interpretation: Previous infection, any hybrid immunity, and two-dose vaccination all provided substantial protection against symptomatic and severe COVID-19 through the early Delta period. Thus, as a surrogate for natural infection, vaccination remains the safest approach to protection. Funding: National Institutes of Health

    Age and frailty are independently associated with increased COVID-19 mortality and increased care needs in survivors: results of an international multi-centre study

    No full text
    Introduction: Increased mortality has been demonstrated in older adults with coronavirus disease 2019 (COVID-19), but the effect of frailty has been unclear. Methods: This multi-centre cohort study involved patients aged 18 years and older hospitalised with COVID-19, using routinely collected data. We used Cox regression analysis to assess the impact of age, frailty and delirium on the risk of inpatient mortality, adjusting for sex, illness severity, inflammation and co-morbidities. We used ordinal logistic regression analysis to assess the impact of age, Clinical Frailty Scale (CFS) and delirium on risk of increased care requirements on discharge, adjusting for the same variables. Results: Data from 5,711 patients from 55 hospitals in 12 countries were included (median age 74, interquartile range [IQR] 54–83; 55.2% male). The risk of death increased independently with increasing age (>80 versus 18–49: hazard ratio [HR] 3.57, confidence interval [CI] 2.54–5.02), frailty (CFS 8 versus 1–3: HR 3.03, CI 2.29–4.00) inflammation, renal disease, cardiovascular disease and cancer, but not delirium. Age, frailty (CFS 7 versus 1–3: odds ratio 7.00, CI 5.27–9.32), delirium, dementia and mental health diagnoses were all associated with increased risk of higher care needs on discharge. The likelihood of adverse outcomes increased across all grades of CFS from 4 to 9. Conclusion: Age and frailty are independently associated with adverse outcomes in COVID-19. Risk of increased care needs was also increased in survivors of COVID-19 with frailty or older age.</p
    corecore